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Objectives

What is Classification?1

Description of our Dataset2

Types of Convolutions3

Tips and run-through of HW2P24



The Classification Problem

● How can I determine which of my emails are spam or not 
spam?

● How can I identify positive and negative feedback from 
tons of customers review

● This picture contains an image of what or who?

● How did Face unlock know I am the owner!!!? (more on 
verification)

● What digit have I written on this paper?



What is Classification?

● A supervised learning method where 
the model tries to predict the 
label/class for a given input data

In Context…
● Given an image, figure out which class 

the image belongs to or rather the 
person in the image

Categories
● Binary classification

● Multi-class classification
An N way classification 
task, predicting from a 
fixed set of possible 
output classes



Closed Set & Open Set

● K known classes are present 
during training and testing

● Learns decision boundaries that 
divide the feature space into K 
parts

Closed Set

● K known classes during training 
but K known and U unknown 
classes present during inference

● Tight decision boundary around 
the K classes are learned

Open set



Closed Set or Open Set

Classification Closed Set

Verification Open Set



Closed Set vs. Open Set (Classification)

Closed Set Open Set



Closed Set vs. Open Set (Verification)

Closed Set Open Set



Problem Statement

This is a closed set problem, where the subjects in the test set have also 
been seen in the training set, although the precise pictures in the test set 
will not be in the training set.

Definition

Identify the person in a picture; about 7000 unique images therefore, 
Multi-class classificationTask

Feature 
extraction model
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Training for Classification

Identify the person in a picture; about 7000 unique images therefore, Multi-class 
classificationTask

● Feature extraction (CNNs)

● Feature embeddings (creates 
important features which are 
separable)

● Generate Logits (unnormalized 
probabilities)

● Softmax (normalizes probabilities 
between 0 and 1)



Training for Classification

Identify the person in a picture; about 7000 unique images therefore, Multi-class 
classificationTask

EfficientNet
Class 1

Class k

Prediction 
results



Conventional Convolution



Conventional Convolution

❏ Each filter (red, blue, ..) has N layers which 
correspond to the N number of input 
channels

❏ Each layer of each filter scans a 
corresponding input channel to produce a 
convolved map

❏ A filter with N layer will produce N 
convolved maps

❏ The N convolved maps produced by a filter 
is added together to produce an output 
channel

❏ Consequently, number of output channels 
determine the number of filters for 
convolving



Conventional Convolution

❏ N input channels, M output channels 

❏ M independent filters with N layers 
each. Assuming each layer has a size 
K * K 

❏ Each filter will produce an output 
channel, therefore M output channels

❏ Total Parameters: N * M * K2



Depthwise Separable Convolution



Depthwise Separable Convolution: Filtering

● M input channels and N output channels in 2 stages:

● Stage 1: Filtering
○ We need M independent KxK 2D filters, one per 

input channel

○ Each filter convolves with an input channel to 
produce intermediary output channels

○ # of input channels == # of output channels



Depthwise Separable Convolution: Combining

● Stage 2: Combining - Point wise convolution
○ N Mx1x1 filters

○ Each filter (Mx1x1) will be applied on the 
intermediary output channel a final output 
channel ( just like conventional convolution)

○ We would have a total of N output channels 
after all N filters have been applied

● Total parameter: NM + MK2



Depthwise separable vs. Regular (Parameter comparison)

3x8x8 (in_channels = 3) Regular Convolution Depthwise convolution

         

3x5x5 kernel

Filtering:

        1x5x5 kernel

        1x5x5 kernel

        1x5x5 kernel

Combining:

        3x1x1 kernel 

Regular Convolution

Kernel: (3x5x5)

Total Parameters:
(8x8)*(3x5x5)*(256)
= 1,228,800

Depthwise convolution

Filtering:
Kernel: 3*(1x5x5)
Parameters:
(8x8) * 3 * (1x5x5)
= 4,800

Combining:
Kernel: 256*(3x1x1)
Parameters:
(8x8) * 256 *(3x1x1)
= 49,152

Let:
out_channels = 256 
Kernel size = 5

Total Parameters : 4,800 + 49,152 = 53,952



Basic Tips: Normalization

Normalization

Batch 
Normalization

● Batch Normalization allows us to 
use much higher learning rates 
and be less careful about 
initialization

● It also acts as a regularizer, in 
some cases eliminating the need 
for drop out

BatchNorm Paper

Layer 
Normalization

● Each neuron has its own 
adaptive bias and gain 

● Layer normalization performs 
same computation at training and 
testing

LayerNorm Paper

Good to explore: Group Normalization & Instance Normalization

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1607.06450.pdf


Basic Tips: Label Smoothing

Problem ● Deep neural network models often find themselves falling prey to Overfitting and 
Over-confidence

● Overconfidence is when the model predicts a very high probability for input making it rigid 
(Hard label) and less generalizing; A good model should give room for uncertainty for 
other classes

● For example, if k = 3 classes, with a label belonging to the first class, we will get an output 
probability result of  [0.9999, 0, 0]; this is a poorly calibrated model

Label 
Smoothing

● Solves the problem of over-confidence by introducing output distribution regularization to 
the network

● Applies weighted average across the output labels to “smoothen” or soften them
● Increases robustness of model and improves model performance



Basic Tips: Label Smoothing
Label Smoothing:

y_ls  =  (1 - α) * y_hot + (α / K)
Where: 
y_ls  = smoothed labels;    y_hot  = Original labels;   α = smoothing factor;    K = classes

Example: Suppose we have K = 3 classes, and our label belongs to the 1st class. Logit Vector z = [a, b, c]; 
Label vector y = [1, 0, 0] (one-hot encoded)

Without Label Smoothing

Gradient of Loss = softmax(z) – y

Our model will make a ≫ b and a ≫ c

z = [10, 0, 0]

softmax(z) = [0.9999, 0, 0]

With Label Smoothing (α = 0.1)

y_ls = [0.9333, 0.0333, 0.0333]

Gradient of Loss = softmax(z) – y_ls 

z = [3.3332, 0, 0]

softmax(z) = [0.9333, 0.0333, 0.0333]

https://arxiv.org/pdf/1812.01187.pdf
https://arxiv.org/abs/1812.01187
https://github.com/ankandrew/online-label-smoothing-pt

https://arxiv.org/pdf/1812.01187.pdf
https://arxiv.org/abs/1812.01187
https://github.com/ankandrew/online-label-smoothing-pt


Basic Tips: DropBlock
DropBlock

● Dropout usually works better with Fully Connected Networks

● Dropout has not proven to be useful in CNNs because of the spatial correlation between the 
activation outputs

● DropBlock is a regularization technique that has proven to be useful for CNNs

● It is a structured form of dropout that drops contiguous regions and not just random pixels

Paper: https://arxiv.org/pdf/1810.12890.pdf
Pytorch docs: https://pytorch.org/vision/main/generated/torchvision.ops.drop_block2d.html

https://arxiv.org/pdf/1810.12890.pdf
https://pytorch.org/vision/main/generated/torchvision.ops.drop_block2d.html


Homework 2 Part 2 Overview

● Objective: To solve an image-based face classification problem using a CNN

● Scenario at hand: Recognizing and verifying faces in images.

● Motivation:  Pictures of the faces have indeterminacy of position and CNN’s are 
position invariant

● Problem Type: A closed set problem, where the subjects in the test set have 
also been seen in the training set, although the precise pictures in the test set 
will not be in the training set.

● Requirement: The embeddings for the subjects in our vocabulary be linearly 
separable from each other



What to implement

● Goal: To implement a face classifier that can extract feature vectors from face images. 
● Two main parts: Feature Extractor and Classification Layer
● Learning facial features (e.g., skin tone, hair color, nose size, etc.) from an image of a person’s 

face and represent them as a fixed-length feature vector called face embedding. 

Steps:

● Implement architectures consisting of multiple convolutional layers outputting a feature 
vector.

● The vector is passed through a linear layer followed by Softmax to classify it among ’N’ 
categories.

● Use cross-entropy loss for optimization. 



Dataset

● Subset of the VGGFace2 dataset. 

● Images are downloaded from Google Image Search

● Large variations in pose, age, illumination, ethnicity, and profession 

● 7,000 identities. 

● Class-balanced, so each class has the equal number of training images, 
and all the images are resized to 224 x 224 pixels. 

● Aim: Learn to classify images with the correct face identity from 7000 
identities.



Dataset and Dataloader class

● Use the ImageFolder class from the torchvision library and passing it the 
path to the training and validation dataset

● ImageFolder class will automatically infer the labels and make a dataset 
object, which we can then pass on to the dataloader. 

● Make sure to pass the image transforms to the dataset class for doing data 
augmentation. 

● The images in subfolders of classification data are arranged in a way that is 
compatible with this dataset class



How do we train CNN’s?

● Conducting face classification = multi-class classification

● Input to system = face’s image, model’s output =  predicted ID of the face

● Goal: Train your model on data to produce “good” face embeddings. 

● Optimize these embeddings to predict the face IDs from the images. The 
resulting embeddings will encode a lot of discriminative facial features, 
just as desired. This suggests an N-class classification task. 

● A typical multi-class classifier conforms to the following architecture: 
Classic multi-class classifier = feature extractor(CNN) + classifier(FC) 



How do we train CNN’s?

● The input will be several images 
● Network consists of several (convolutional) layers for feature extraction. 
● The output of the last feature extraction layers is the face embedding. 
● Then pass this face embedding through a linear layer, followed by a Softmax, 

to classify the image among the N people. 
● Use cross-entropy loss to optimize your network to predict the correct person 

for every training image (the ground truth will be provided in the training data)
● Use validation set for fine-tuning your model. 



Residual networks

● Deep neural networks suffer from vanishing and exploding gradients
● Residual networks (resnets) enable us to train very deep neural networks
● Resnets consist of residual blocks-  set of layers that are connected to 

each other, and the input of the first layer is added to the output of the last 
layer in the block. 

● This is a residual connection, allowing deeper networks to be built and 
trained efficiently. 

● Popular architectures that make use of residual blocks: MobilNet, ResNet 
and ConvNext etc. Please read their respective research papers!!



Starter Notebook Overview

● Download Data from Kaggle (Add your Kaggle key and username)
● Set your Configurations 

○ Epochs - 10 for early submission, but potentially 100 for final submission. Start 
early!!!

○ Batch_size
○ Learning rate 

● Classification Dataset: Transforms/augmentation methods using torchvision
● Data visualization : Sanity check
● Very Simple Network (for Mandatory Early Submission): 4-layer CNN
● Resnets : MobilNet, ResNet and ConvNext, etc
● Setup everything for training: Criterion, Optimizer, Scheduler



Questions?


